If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19-x^2=13
We move all terms to the left:
19-x^2-(13)=0
We add all the numbers together, and all the variables
-1x^2+6=0
a = -1; b = 0; c = +6;
Δ = b2-4ac
Δ = 02-4·(-1)·6
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*-1}=\frac{0-2\sqrt{6}}{-2} =-\frac{2\sqrt{6}}{-2} =-\frac{\sqrt{6}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*-1}=\frac{0+2\sqrt{6}}{-2} =\frac{2\sqrt{6}}{-2} =\frac{\sqrt{6}}{-1} $
| a=15+3 | | 19–m=5 | | r/8-3=4 | | (2/5)x=31 | | x^2-15x-23=0 | | 2/5x=31 | | 33x=16 | | 4j+2=50 | | 8x-4+5x+15=115 | | ‒5x+3=33 | | 27=10x–3 | | 9(k-2)=4(3k+4) | | x^2-15x=23 | | 4x+7=9x-20 | | 5c+6+8c–2=13c+4 | | 3v+7=22- | | 44=11r | | 11x=2x+9 | | x^2-15x=-23 | | 129+x+x=180 | | 17-4=k | | −2x−7=13 | | –42=7p | | 6x=108. | | 6=2x=5x-9x+2 | | 25-2y11=y | | 8x=18.75 | | -12m=96 | | 4×-3x+4=2x+2 | | 10p-07=3 | | -3=b+6 | | 4x+40-(2x+4)=40 |